V = 7568.1 (4) Å³

Mo $K\alpha$ radiation

 $\mu = 4.30 \text{ mm}^-$

 $R_{\rm int} = 0.080$

refinement

 $\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

T = 100.0 (1) K

 $0.52 \times 0.10 \times 0.06 \text{ mm}$

47391 measured reflections

11172 independent reflections

6920 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Z = 16

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,*N*'-Bis(5-bromo-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine

Hoong-Kun Fun,^a* Reza Kia^a and Hadi Kargar^b‡

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran Correspondence e-mail: hkfun@usm.my

Received 2 September 2008; accepted 3 September 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.044; wR factor = 0.111; data-to-parameter ratio = 24.1.

The crystal structure of the title Schiff base compound, C19H20Br2N2O2, contains two crystallographically independent molecules (A and B) in the asymmetric unit, with similar conformations. Intramolecular $O-H \cdots N$ (× 4) and C- $H \cdots N$ (\times 5) hydrogen bonds form six- and five-membered rings, producing S(6) and S(5) ring motifs, respectively. One of the N atoms in molecule A acts as a trifurcated acceptor, the rest of the N atoms being bifurcated acceptors. The dihedral angles between the benzene rings in molecules A and B are 47.83 (17) and 61.11 (17)°, respectively. The molecular conformation is stabilized by intramolecular O-H···N and C-H...N hydrogen bonds. The short distances between the centroids of the benzene rings [3.7799 (19)-3.890 (2) Å] indicate the existence of π - π interactions. In addition, the crystal structure is further stabilized by an intermolecular C-H···O hydrogen bond, C-H·· π interactions, and short intermolecular Br...Br and Br...O contacts [3.4786 (5) and 3.149 (3) Å, respectively].

Related literature

For bond-length data, see: Allen *et al.* (1987). For hydrogenbond motifs, see: Bernstein *et al.* (1995). For information on Schiff base ligands and complexes and their applications, see, for example: Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008); Fun, Mirkhani *et al.* (2008*a,b*); Calligaris & Randaccio (1987); Casellato & Vigato (1977); Pal *et al.* (2005); Reglinski *et al.* 2004; Hou *et al.* (2001); Ren *et al.* (2002).

Experimental

Crystal data

 $C_{19}H_{20}Br_2N_2O_2$ $M_r = 468.19$ Monoclinic, C2/c a = 31.7684 (10) Å b = 6.2436 (2) Å c = 38.7287 (11) Å $\beta = 99.870$ (2)°

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) T_{min} = 0.213, T_{max} = 0.782

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	
$wR(F^2) = 0.110$	
S = 1.01	
11172 reflections	
463 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O1B-H1OB\cdots N1B$	0.85	1.81	2.580 (4)	151
$O2A - H2OA \cdots N2A$	0.85 (4)	1.79 (4)	2.578 (4)	154 (4)
$O1A - H1OA \cdots N1A$	0.79 (5)	1.85 (5)	2.572 (4)	153 (4)
$O2B - H2OB \cdot \cdot \cdot N2B$	0.73 (5)	1.94 (5)	2.586 (4)	149 (5)
$C8A - H8AA \cdots N2A$	0.99	2.58	2.960 (4)	103
$C8B - H8BA \cdots N2B$	0.99	2.60	2.966 (4)	102
$C16B - H16B \cdots O2B^{i}$	0.95	2.58	3.290 (5)	131
$C19A - H19B \cdots N1A$	0.98	2.58	2.918 (4)	100
C19A−H19C···N2A	0.98	2.58	2.933 (5)	101
$C19B - H19F \cdot \cdot \cdot N1B$	0.98	2.60	2.926 (5)	100
$C7B-H7BA\cdots Cg1^{ii}$	0.95	2.96	3.571 (4)	123
$C18B - H18D \cdots Cg2^{iii}$	0.98	2.77	3.652 (4)	151

Symmetry codes: (i) -x, -y + 1, -z; (ii) x, y - 1, z; (iii) x, -y - 1, $z - \frac{1}{2}$. Cg1 and Cg2 are the centroids of the C1A-C6A and C12A-C17A benzene rings, respectively.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/

[‡] Additional correspondence author, tel: +98-352-7220011 ext. 157, fax: 98-352-7228110, e-mail: hkargar@pnu.ac.ir.

PFIZIK/613312). RK thanks Universiti Sains Malaysia for an award of a post-doctoral research fellowship. HK thanks PNU for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2626).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.

Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31-50.

- Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.
- Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.
- Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, 01374–01375.
- Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, 01471.
- Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.
- Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). *Inorg. Chem.* 44, 3880– 3889.
- Reglinski, J., Taylor, M. K. & Kennedy, A. R. (2004). Acta Cryst. C60, o169– 0172.
- Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2008). E64, o1895-o1896 [doi:10.1107/S160053680802816X]

N,N'-Bis(5-bromo-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine

H.-K. Fun, R. Kia and H. Kargar

Comment

The condensation of primary amines with carbonyl compounds yields Schiff base (Casellato & Vigato, 1977) that are still now regarded as one of the most potential group of chelators for facile preparations of metallo-organic hybrid materials. In the past two decades, the synthesis, structure and properties of Schiff base complexes have stimulated much interest for their noteworthy contributions in single molecule-based magnetism, materials science, catalysis of many reactions like carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis, *etc.* (Pal *et al.*, 2005; Reglinski *et al.*, 2004; Hou *et al.*, 2001; Ren *et al.*, 2002). Only a relatively small number of free Schiff base ligands have been characterized by X-ray crystallography (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia, 2008; Fun, Kia & Kargar, 2008; Fun, Mirkhani *et al.*, 2008*a,b*) on the structural characterization of Schiff base compounds, the title compound (I), is reported here.

The crystal structure of the title compound (I) (Fig. I), contains two crystallographically independent molecules (A and B) in the asymmetric unit, with similar conformations. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987). Intramolecular O—H···N (x 4) and C—H···N (x 5) hydrogen bonds form six- and five-membered rings, producing S(6) and S(5) ring motifs, respectively (Bernstein *et al.* 1995) (Table 1). One of the nitrogen atoms in the molecule A acts as a trifurcated acceptor, but the rest of the nitrogen atoms are bifurcated acceptors. The dihedral angles between the benzene rings in molecule A and B is 47.83 (17)° and 61.11 (17)°. The molecular conformation is stabilized by intramolecular O—H···N and C—H···N hydrogen bonds. The short distances between the centroids of the benzene rings [Cg2-Cg2 = 3.7799 (19) Å and Cg3-Cg3 = 3.890 (2) Å] indicate the existence of π - π interactions. The Cg2 and Cg3 are the centroids of the C12A–C17A and C12B–C17B benzene rings. The interesting features of the crystal structure are short intermolecular Br···Br [symmetry code: 1/2 + x, -1/2 - y + 1/2 + z] and Br···O [symmetry code: -x, 1 + y, 1/2 - z] interactions, with distances of 3.4786 (5) and 3.149 (3) Å, respectively, which are significantly shorter than the sum of the van der Waals radii of the relevent atoms.

In addition, the crystal structure is further stabilized by intermolecular C—H···O hydrogen bond and C—H··· π interactions.

Experimental

The synthetic method has been described earlier (Reglinski *et al.*, 2004). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement

H atoms bound to the O1A, O2A, and O2B were located in a difference Fourier map and refined freely. H atom bound to O1B was located from a difference Fourier map and constrained to refine with the parent atom after distance restraint of 0.84 (1) Å. The rest of the H atoms were positioned geometrically (C—H = 0.95-0.99 Å) and refined using a riding model.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular interactions are shown as dashed lines.

Fig. 2. The crystal packing of (I), showing stacking of molecules down the *b*-axis. In-tramolecular and intermolecular interactions are shown as dashed lines.

N,*N*'-Bis(5-bromo-2-hydroxybenzylidene)-2,2-dimethylpropane- 1,3-diamine

Crystal data	
$C_{19}H_{20}Br_2N_2O_2$	$F_{000} = 3744$
$M_r = 468.19$	$D_{\rm x} = 1.644 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 5640 reflections
a = 31.7684 (10) Å	$\theta = 3.0 - 27.0^{\circ}$
b = 6.2436 (2) Å	$\mu = 4.30 \text{ mm}^{-1}$
c = 38.7287 (11) Å	T = 100.0 (1) K
$\beta = 99.870 \ (2)^{\circ}$	Needle, yellow
$V = 7568.1 (4) \text{ Å}^3$	$0.52\times0.10\times0.06~mm$
Z = 16	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	11172 independent reflections
Radiation source: fine-focus sealed tube	6920 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.080$
T = 100.0(1) K	$\theta_{\text{max}} = 30.2^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -36 \rightarrow 44$
$T_{\min} = 0.213, \ T_{\max} = 0.783$	$k = -8 \rightarrow 8$
47391 measured reflections	$l = -54 \longrightarrow 54$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of independent and constrained refinement
$w P(E^2) = 0.110$	$w = 1/[\sigma^2(F_o^2) + (0.0443P)^2 + 4.1476P]$
WR(T) = 0.110	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.001$
11172 reflections	$\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$
463 parameters	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1A	0.048763 (12)	0.47249 (7)	0.124135 (9)	0.02437 (10)
Br2A	0.330044 (11)	0.00679 (6)	0.479516 (9)	0.02179 (9)
O1A	0.06595 (9)	0.8408 (5)	0.26946 (7)	0.0269 (6)
O2A	0.18364 (8)	0.6081 (4)	0.43058 (7)	0.0214 (6)
N1A	0.09915 (9)	0.4834 (5)	0.29342 (7)	0.0207 (7)
N2A	0.14171 (9)	0.2889 (5)	0.39950 (7)	0.0185 (6)
C1A	0.06195 (11)	0.7509 (6)	0.23744 (9)	0.0197 (8)
C2A	0.04274 (11)	0.8701 (6)	0.20872 (10)	0.0231 (8)
H2AA	0.0321	1.0093	0.2121	0.028*
C3A	0.03900 (11)	0.7879 (6)	0.17532 (9)	0.0206 (8)
H3AA	0.0261	0.8709	0.1558	0.025*
C4A	0.05410 (11)	0.5838 (6)	0.17031 (9)	0.0202 (8)
C5A	0.07244 (11)	0.4615 (6)	0.19833 (9)	0.0191 (8)
H5AA	0.0825	0.3215	0.1946	0.023*
C6A	0.07639 (11)	0.5435 (6)	0.23258 (9)	0.0182 (8)
C7A	0.09411 (11)	0.4094 (6)	0.26223 (9)	0.0197 (8)
H7AA	0.1020	0.2657	0.2584	0.024*
C8A	0.11469 (11)	0.3431 (6)	0.32298 (9)	0.0200 (8)
H8AA	0.1426	0.3959	0.3353	0.024*
H8AB	0.1189	0.1969	0.3143	0.024*
C9A	0.08291 (11)	0.3352 (6)	0.34871 (9)	0.0178 (7)
C10A	0.10260 (11)	0.1953 (6)	0.37987 (9)	0.0191 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H10A	0.0816	0.1765	0.3958	0.023*
H10B	0.1091	0.0520	0.3712	0.023*
C11A	0.17384 (11)	0.1677 (6)	0.40944 (8)	0.0182 (8)
H11A	0.1724	0.0207	0.4030	0.022*
C12A	0.21289 (11)	0.2529 (6)	0.43068 (8)	0.0168 (7)
C13A	0.24770 (11)	0.1167 (6)	0.44173 (8)	0.0174 (7)
H13A	0.2467	-0.0279	0.4340	0.021*
C14A	0.28333 (10)	0.1924 (6)	0.46376 (9)	0.0166 (7)
C15A	0.28534 (11)	0.4037 (6)	0.47528 (8)	0.0187 (8)
H15A	0.3097	0.4540	0.4909	0.022*
C16A	0.25179 (11)	0.5388 (6)	0.46392 (9)	0.0191 (8)
H16A	0.2534	0.6836	0.4715	0.023*
C17A	0.21539 (11)	0.4681 (6)	0.44144 (9)	0.0170 (7)
C18A	0.04145 (11)	0.2283 (7)	0.33119 (10)	0.0235 (8)
H18A	0.0211	0.2254	0.3476	0.035*
H18B	0.0475	0.0814	0.3245	0.035*
H18C	0.0291	0.3094	0.3102	0.035*
C19A	0.07370 (12)	0.5588 (6)	0.36131 (9)	0.0222 (8)
H19A	0.0532	0.5491	0.3775	0.033*
H19B	0.0617	0.6476	0.3412	0.033*
H19C	0.1003	0.6235	0.3734	0.033*
Br1B	0.203156 (14)	-0.21813(7)	0.339930 (10)	0.03229 (11)
Br2B	-0.107371(12)	-0.17661(7)	0.040046 (10)	0.02582 (10)
01B	0.18949 (9)	0.3706 (4)	0.21548 (7)	0.0311 (7)
H1OB	0.1733	0.3089	0.1988	0.047*
02B	0.04871 (9)	0.3734 (5)	0.04206 (7)	0.0234 (6)
N1B	0 15040 (9)	0.0685 (5)	0 17729 (7)	0.0210(7)
N2B	0.09435 (9)	0.0503 (5)	0.06810(7)	0.0213(7)
C1B	0 19306 (11)	0 2322 (6)	0.24240(10)	0.0230(8)
C2B	0.21359 (12)	0.2995 (7)	0.27530(10)	0.0274(9)
H2BA	0.2255	0.4392	0.2781	0.033*
C3B	0.21669 (12)	0.1653 (7)	0.30373(10)	0.0260 (9)
H3BA	0.2306	0.2126	0.3261	0.031*
C4B	0.19961 (12)	-0.0384(7)	0.29977 (9)	0.0241(9)
C5B	0.17993(11)	-0.1126(6)	0.29977(9) 0.26741(9)	0.0211(9)
H5BA	0.1687	-0.2539	0.2650	0.025*
C6B	0.17662 (11)	0.0223 (6)	0.23812 (9)	0.0195 (8)
C7B	0.15596 (11)	-0.0552(6)	0.20381(9)	0.0195(8)
С7В Н7ВА	0.1466	-0.1997	0.20301 (5)	0.0105 (0)
C8B	0.13053 (11)	-0.0151 (6)	0.14318 (9)	0.022
H8BA	0.1022	0.0522	0.1360	0.0220 (0)
H8BB	0.1263	-0.1716	0.1300	0.026*
C9B	0.15859 (11)	0.0308 (6)	0.11529 (9)	0.0202 (8)
C10B	0.13537(11)	-0.0555(7)	0.08002(9)	0.0202(8)
HIOC	0.1539	-0.0355	0.0621	0.0218 (8)
HIOD	0.1305	-0.2111	0.0822	0.020
C11B	0.1505	-0.0637 (6)	0.0622	0.020
H11B	0.0632	-0.2135	0.00340(9)	0.0193 (0)
	0.0052	0.2133	0.0070	0.025°
U12D	0.010/0(11)	0.0290 (0)	0.03190 (0)	0.0173(7)

C13B	-0.01786 (11)	-0.0943 (6)	0.05134 (9)	0.0203 (8)
H13B	-0.0154	-0.2390	0.0590	0.024*
C14B	-0.05760 (11)	-0.0080 (6)	0.03961 (9)	0.0188 (8)
C15B	-0.06189 (11)	0.2017 (6)	0.02785 (9)	0.0213 (8)
H15B	-0.0894	0.2590	0.0193	0.026*
C16B	-0.02609 (11)	0.3268 (6)	0.02854 (9)	0.0212 (8)
H16B	-0.0290	0.4705	0.0204	0.025*
C17B	0.01438 (11)	0.2447 (6)	0.04102 (9)	0.0192 (8)
C18B	0.20099 (11)	-0.0906 (7)	0.12457 (10)	0.0249 (9)
H18D	0.2190	-0.0598	0.1070	0.037*
H18E	0.1953	-0.2448	0.1250	0.037*
H18F	0.2158	-0.0447	0.1477	0.037*
C19B	0.16738 (12)	0.2702 (6)	0.11289 (10)	0.0239 (8)
H19D	0.1402	0.3474	0.1069	0.036*
H19E	0.1849	0.2955	0.0948	0.036*
H19F	0.1827	0.3215	0.1355	0.036*
H2OA	0.1637 (13)	0.531 (7)	0.4195 (10)	0.027 (12)*
H1OA	0.0731 (13)	0.745 (8)	0.2823 (11)	0.031 (14)*
H2OB	0.0676 (14)	0.317 (8)	0.0506 (12)	0.043 (16)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1A	0.02596 (19)	0.0293 (2)	0.01827 (17)	0.00233 (18)	0.00511 (14)	0.00038 (16)
Br2A	0.01765 (17)	0.0224 (2)	0.02391 (17)	0.00251 (16)	-0.00050 (13)	0.00215 (16)
O1A	0.0358 (16)	0.0207 (16)	0.0234 (14)	0.0043 (14)	0.0028 (12)	-0.0006 (13)
O2A	0.0205 (13)	0.0148 (14)	0.0271 (13)	0.0027 (12)	-0.0014 (11)	-0.0022 (12)
N1A	0.0187 (15)	0.0206 (17)	0.0223 (14)	0.0010 (14)	0.0022 (12)	0.0022 (14)
N2A	0.0204 (15)	0.0166 (17)	0.0176 (14)	0.0015 (14)	0.0008 (12)	0.0022 (13)
C1A	0.0174 (17)	0.019 (2)	0.0241 (18)	-0.0018 (16)	0.0064 (14)	-0.0020 (16)
C2A	0.0231 (19)	0.017 (2)	0.030 (2)	0.0026 (17)	0.0064 (16)	0.0017 (17)
C3A	0.0163 (17)	0.021 (2)	0.0241 (18)	0.0019 (16)	0.0028 (14)	0.0081 (16)
C4A	0.0179 (17)	0.026 (2)	0.0179 (16)	-0.0035 (17)	0.0051 (14)	-0.0008 (16)
C5A	0.0158 (16)	0.017 (2)	0.0247 (18)	0.0005 (15)	0.0050 (14)	-0.0001 (16)
C6A	0.0155 (17)	0.0166 (19)	0.0224 (17)	-0.0002 (15)	0.0033 (13)	0.0023 (15)
C7A	0.0177 (18)	0.019 (2)	0.0235 (18)	0.0010 (16)	0.0055 (14)	-0.0019 (16)
C8A	0.0171 (17)	0.022 (2)	0.0195 (17)	-0.0012 (16)	0.0009 (14)	-0.0003 (16)
C9A	0.0184 (17)	0.0150 (19)	0.0192 (16)	0.0017 (16)	0.0008 (13)	0.0016 (15)
C10A	0.0166 (17)	0.018 (2)	0.0226 (17)	-0.0039 (16)	0.0030 (14)	-0.0010 (16)
C11A	0.0228 (18)	0.0174 (19)	0.0153 (16)	-0.0026 (16)	0.0057 (14)	0.0023 (15)
C12A	0.0161 (17)	0.0189 (19)	0.0156 (15)	-0.0010 (15)	0.0038 (13)	0.0017 (15)
C13A	0.0210 (18)	0.0150 (18)	0.0168 (16)	0.0014 (16)	0.0046 (13)	0.0014 (15)
C14A	0.0156 (16)	0.0180 (19)	0.0165 (15)	0.0023 (15)	0.0035 (13)	0.0048 (15)
C15A	0.0163 (17)	0.024 (2)	0.0154 (16)	-0.0002 (16)	0.0011 (13)	0.0013 (15)
C16A	0.0221 (18)	0.0167 (19)	0.0189 (16)	-0.0033 (16)	0.0044 (14)	-0.0019 (15)
C17A	0.0180 (17)	0.0147 (19)	0.0189 (16)	0.0001 (15)	0.0053 (13)	-0.0003 (15)
C18A	0.0173 (18)	0.024 (2)	0.0273 (19)	-0.0035 (17)	-0.0007 (15)	-0.0016 (17)
C19A	0.0231 (19)	0.020 (2)	0.0219 (17)	0.0019 (17)	-0.0021 (14)	-0.0003 (16)

Br1B	0.0397 (2)	0.0322 (3)	0.02182 (19)	0.0007 (2)	-0.00362 (16)	-0.00159 (18)
Br2B	0.01964 (18)	0.0264 (2)	0.0304 (2)	-0.00490 (17)	0.00142 (15)	-0.00229 (17)
O1B	0.0361 (16)	0.0214 (15)	0.0344 (15)	-0.0074 (13)	0.0022 (13)	0.0013 (13)
O2B	0.0202 (14)	0.0190 (16)	0.0299 (14)	-0.0024 (13)	0.0015 (12)	0.0058 (12)
N1B	0.0205 (16)	0.0222 (18)	0.0203 (15)	0.0028 (14)	0.0035 (12)	0.0007 (14)
N2B	0.0181 (15)	0.0252 (18)	0.0178 (14)	0.0016 (14)	0.0035 (11)	0.0028 (13)
C1B	0.0184 (18)	0.021 (2)	0.0294 (19)	-0.0007 (17)	0.0048 (15)	-0.0011 (17)
C2B	0.022 (2)	0.020 (2)	0.038 (2)	-0.0057 (18)	0.0029 (17)	-0.0074 (19)
C3B	0.0218 (19)	0.025 (2)	0.029 (2)	-0.0002 (18)	-0.0016 (15)	-0.0111 (18)
C4B	0.0221 (19)	0.027 (2)	0.0227 (17)	0.0073 (17)	0.0024 (15)	-0.0021 (17)
C5B	0.0186 (18)	0.0170 (19)	0.0257 (18)	0.0010 (16)	0.0036 (14)	-0.0027 (16)
C6B	0.0169 (17)	0.019 (2)	0.0221 (17)	0.0030 (16)	0.0030 (13)	-0.0014 (16)
C7B	0.0150 (17)	0.0178 (19)	0.0234 (17)	-0.0018 (15)	0.0052 (14)	-0.0034 (16)
C8B	0.0181 (17)	0.023 (2)	0.0243 (17)	-0.0025 (17)	0.0023 (14)	0.0014 (17)
C9B	0.0155 (17)	0.022 (2)	0.0234 (17)	0.0019 (16)	0.0030 (14)	0.0031 (16)
C10B	0.0210 (18)	0.024 (2)	0.0204 (17)	0.0026 (17)	0.0037 (14)	0.0003 (16)
C11B	0.0200 (18)	0.019 (2)	0.0194 (17)	0.0048 (16)	0.0037 (14)	0.0011 (15)
C12B	0.0171 (17)	0.020 (2)	0.0149 (15)	0.0001 (16)	0.0004 (13)	-0.0013 (15)
C13B	0.0222 (19)	0.018 (2)	0.0203 (17)	0.0013 (16)	0.0020 (14)	0.0023 (16)
C14B	0.0170 (17)	0.020 (2)	0.0187 (16)	-0.0024 (16)	0.0025 (13)	-0.0053 (16)
C15B	0.0184 (18)	0.024 (2)	0.0207 (17)	0.0037 (17)	-0.0004 (14)	0.0014 (16)
C16B	0.026 (2)	0.017 (2)	0.0205 (17)	0.0018 (17)	0.0038 (15)	0.0012 (16)
C17B	0.0231 (19)	0.019 (2)	0.0162 (16)	-0.0003 (16)	0.0048 (14)	-0.0010 (15)
C18B	0.0200 (19)	0.028 (2)	0.0261 (19)	0.0019 (18)	0.0016 (15)	-0.0024 (18)
C19B	0.0210 (19)	0.024 (2)	0.0267 (19)	-0.0024(17)	0.0050 (15)	0.0042 (17)

Geometric parameters (Å, °)

Br1A—C4A	1.899 (3)	Br1B—C4B	1.906 (4)
Br2A—C14A	1.899 (3)	Br2B—C14B	1.902 (4)
O1A—C1A	1.347 (4)	O1B—C1B	1.344 (5)
O1A—H1OA	0.79 (4)	O1B—H1OB	0.8464
O2A—C17A	1.347 (4)	O2B—C17B	1.350 (4)
O2A—H2OA	0.85 (4)	O2B—H2OB	0.73 (4)
N1A—C7A	1.278 (4)	N1B—C7B	1.273 (4)
N1A—C8A	1.459 (4)	N1B—C8B	1.460 (4)
N2A—C11A	1.276 (4)	N2B—C11B	1.267 (5)
N2A—C10A	1.462 (4)	N2B-C10B	1.463 (5)
C1A—C2A	1.390 (5)	C1B—C2B	1.393 (5)
C1A—C6A	1.397 (5)	C1B—C6B	1.410 (5)
C2A—C3A	1.378 (5)	C2B—C3B	1.374 (6)
С2А—Н2АА	0.9500	C2B—H2BA	0.9500
C3A—C4A	1.387 (5)	C3B—C4B	1.381 (6)
СЗА—НЗАА	0.9500	СЗВ—НЗВА	0.9500
C4A—C5A	1.372 (5)	C4B—C5B	1.381 (5)
C5A—C6A	1.407 (5)	C5B—C6B	1.402 (5)
С5А—Н5АА	0.9500	С5В—Н5ВА	0.9500
С6А—С7А	1.454 (5)	C6B—C7B	1.460 (5)
С7А—Н7АА	0.9500	С7В—Н7ВА	0.9500

C8A—C9A	1.536 (5)	C8B—C9B	1.540 (5)
С8А—Н8АА	0.9900	C8B—H8BA	0.9900
С8А—Н8АВ	0.9900	C8B—H8BB	0.9900
C9A—C19A	1.524 (5)	C9B—C19B	1.527 (5)
C9A—C18A	1.528 (5)	C9B—C18B	1.533 (5)
C9A—C10A	1.534 (5)	C9B—C10B	1.534 (5)
C10A—H10A	0.9900	C10B—H10C	0.9900
C10A—H10B	0.9900	C10B—H10D	0.9900
C11A—C12A	1.466 (5)	C11B—C12B	1.458 (5)
C11A—H11A	0.9500	C11B—H11B	0.9500
C12A—C13A	1.403 (5)	C12B—C13B	1.393 (5)
C12A—C17A	1.405 (5)	C12B—C17B	1.407 (5)
C13A—C14A	1.379 (5)	C13B—C14B	1.376 (5)
C13A—H13A	0.9500	C13B—H13B	0.9500
C14A— $C15A$	1 391 (5)	C14B—C15B	1 385 (5)
C15A - C16A	1 371 (5)	C15B—C16B	1.376 (5)
C15A—H15A	0.9500	C15B—H15B	0.9500
C16A - C17A	1 395 (5)	C16B-C17B	1 391 (5)
C16A - H16A	0.9500	C16B—H16B	0.9500
C18A_H18A	0.9800	C18B—H18D	0.9500
C18A—H18B	0.9800	C18B—H18F	0.9800
	0.9800	C18B H18E	0.9800
	0.9800	C10B H10D	0.9800
C19A H19B	0.9800	C19B—II19D	0.9800
	0.9800		0.9800
	A 9800		
Сіяд—Ніяс	0.9800	CI9B—HI9F	0.9800
C19A—H19C C1A—O1A—H10A	0.9800 104 (3)	C19B—H19F C1B—O1B—H10B	0.9800 105.1
C19A—H19C C1A—O1A—H1OA C17A—O2A—H2OA	0.9800 104 (3) 104 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H20B	0.9800 105.1 109 (4)
C19A—H19C C1A—O1A—H1OA C17A—O2A—H2OA C7A—N1A—C8A	0.9800 104 (3) 104 (3) 119.7 (3)	C19B—H19F C1B—O1B—H1OB C17B—O2B—H2OB C7B—N1B—C8B	0.9800 105.1 109 (4) 119.5 (3)
C19A—H19C C1A—O1A—H1OA C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B	105.1 109 (4) 119.5 (3) 118.2 (3)
C19A—H19C C1A—O1A—H1OA C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3)	C19B—H19F C1B—O1B—H1OB C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4)
C19A—H19C C1A—O1A—H1OA C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3)
C19A—H19C C1A—O1A—H1OA C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 119.9 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4)
C19A—H19C C1A—O1A—H1OA C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 119.9 (3) 120.5 (4)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4)
C19A—H19C C1A—O1A—H1OA C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 119.9 (3) 120.5 (4) 119.7	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 119.9 (3) 120.5 (4) 119.7 119.7	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA C1B—C2B—H2BA	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—C4A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.8 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—C4B	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3)
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—C4A C2A—C3A—H3AA	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.8 (3) 120.1	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—C4B C2B—C3B—H3BA	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3) 120.0
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—H3AA C4A—C3A—H3AA	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.7 119.8 (3) 120.1	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—H2BA C2B—C3B—H3BA	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3) 120.0
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—H3AA C4A—C3A—H3AA C5A—C4A—C3A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.7 119.8 (3) 120.1 120.1 120.7 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—H2BA C1B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—C4B C2B—C3B—H3BA C4B—C3B—H3BA C3B—C4B—C5B	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3) 120.0 120.0 120.0
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—C4A C2A—C3A—C4A C2A—C3A—H3AA C5A—C4A—C3A C5A—C4A—B1A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.7 119.7 119.8 (3) 120.1 120.1 120.7 (3) 119.9 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA C1B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—H2BA C2B—C3B—H3BA C4B—C3B—H3BA C4B—C5B C3B—C4B—Br1B	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3) 120.0 120.0 121.2 (4) 119.0 (3)
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—C4A C2A—C3A—H3AA C4A—C3A—H3AA C5A—C4A—C3A C5A—C4A—Br1A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.7 119.8 (3) 120.1 120.1 120.7 (3) 119.9 (3) 119.4 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—H2BA C2B—C3B—H3BA C2B—C3B—H3BA C4B—C3B—H3BA C3B—C4B—C5B C3B—C4B—Br1B C5B—C4B—Br1B	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3) 120.0 121.2 (4) 119.0 (3) 119.8 (3)
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—C4A C2A—C3A—H3AA C4A—C3A—H3AA C5A—C4A—Br1A C3A—C4A—Br1A C4A—C5A—C6A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.7 119.7 119.8 (3) 120.1 120.1 120.1 120.7 (3) 119.9 (3) 119.4 (3) 120.0 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—H2BA C2B—C3B—H2BA C2B—C3B—H3BA C4B—C3B—H3BA C3B—C4B—C5B C3B—C4B—Br1B C5B—C4B—Br1B C4B—C5B—C6B	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3) 120.0 121.2 (4) 119.8 (3) 119.5 (4)
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—C4A C2A—C3A—H3AA C4A—C3A—H3AA C5A—C4A—Br1A C3A—C4A—Br1A C3A—C4A—Br1A C4A—C5A—C6A C4A—C5A—C6A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.7 119.7 119.8 (3) 120.1 120.1 120.7 (3) 119.9 (3) 119.4 (3) 120.0 (3) 120.0	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—H2BA C1B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—C4B C2B—C3B—H3BA C4B—C3B—H3BA C4B—C3B—H3BA C3B—C4B—B1B C5B—C4B—B1B C4B—C5B—C6B C4B—C5B—C6B	0.9800 105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3) 120.0 121.2 (4) 119.6 (3) 119.8 (3) 119.5 (4)
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—C4A C2A—C3A—C4A C2A—C3A—H3AA C4A—C3A—H3AA C5A—C4A—Br1A C5A—C4A—Br1A C3A—C4A—Br1A C4A—C5A—C6A C4A—C5A—H5AA	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.7 119.7 119.8 (3) 120.1 120.1 120.1 120.1 120.1 120.7 (3) 119.9 (3) 119.4 (3) 120.0 120.0	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—H2BA C2B—C3B—H3BA C2B—C3B—H3BA C4B—C3B—H3BA C3B—C4B—C5B C3B—C4B—Br1B C5B—C4B—Br1B C4B—C5B—C6B C4B—C5B—H5BA C6B—C5B—H5BA	0.9800 105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3) 120.0 121.2 (4) 119.6 (3) 119.7 120.0 120.0 120.0 120.0 120.0 120.0 120.2 120.2 120.2
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—C4A C2A—C3A—H3AA C4A—C3A—H3AA C5A—C4A—Br1A C5A—C4A—Br1A C4A—C5A—C6A C4A—C5A—H5AA C1A—C6A—C5A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.7 119.7 119.8 (3) 120.1 120.1 120.1 120.1 120.1 120.7 (3) 119.9 (3) 119.9 (3) 119.4 (3) 120.0 119.1 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—H2BA C2B—C3B—H3BA C2B—C3B—H3BA C4B—C3B—H3BA C3B—C4B—Br1B C5B—C4B—Br1B C4B—C5B—C6B C4B—C5B—H5BA C6B—C5B—H5BA C5B—C6B—C1B	105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 120.0 (3) 120.0 120.0 121.2 (4) 119.8 (3) 119.5 (4) 120.2 120.2 119.2 (3)
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—H2AA C2A—C3A—H3AA C4A—C3A—H3AA C4A—C3A—H3AA C5A—C4A—Br1A C3A—C4A—Br1A C3A—C4A—Br1A C4A—C5A—C6A C4A—C5A—H5AA C1A—C6A—C5A C1A—C6A—C5A C1A—C6A—C7A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.7 119.7 119.8 (3) 120.1 120.1 120.1 120.1 120.1 120.7 (3) 119.9 (3) 119.4 (3) 120.0 120.0 120.0 120.0 120.0 121.3 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—C4B C2B—C3B—C4B C2B—C3B—H3BA C4B—C3B—H3BA C4B—C4B—B1B C5B—C4B—B1B C5B—C4B—B1B C4B—C5B—H5BA C6B—C5B—H5BA C5B—C6B—C1B C5B—C6B—C1B C5B—C6B—C7B	0.9800 105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3) 120.0 121.2 (4) 119.8 (3) 119.5 (4) 120.2 120.2 119.2 (3) 119.8 (3)
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—H2AA C2A—C3A—H3AA C4A—C3A—H3AA C4A—C3A—H3AA C5A—C4A—Br1A C3A—C4A—Br1A C3A—C4A—Br1A C4A—C5A—C6A C4A—C5A—H5AA C1A—C6A—C5A C1A—C6A—C7A C5A—C6A—C7A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.7 119.7 119.8 (3) 120.1 120.1 120.1 120.1 120.1 120.7 (3) 119.9 (3) 119.4 (3) 120.0 120.0 119.1 (3) 121.3 (3) 119.7 (3)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—C4B C2B—C3B—H2BA C2B—C3B—H3BA C4B—C3B—H3BA C4B—C3B—H3BA C4B—C5B—H3BA C4B—C5B—C5B C3B—C4B—Br1B C5B—C4B—Br1B C4B—C5B—H5BA C6B—C5B—H5BA C5B—C6B—C1B C5B—C6B—C7B C1B—C6B—C7B	0.9800 105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3) 120.0 121.2 (4) 119.5 (3) 119.5 (4) 120.2 120.2 119.2 (3) 119.8 (3) 120.2 119.8 (3) 120.2 120.3 119.8 (3) 120.1 (3)
C19A—H19C C1A—O1A—H10A C17A—O2A—H2OA C7A—N1A—C8A C11A—N2A—C10A O1A—C1A—C2A O1A—C1A—C6A C2A—C1A—C6A C3A—C2A—C1A C3A—C2A—H2AA C1A—C2A—H2AA C2A—C3A—C4A C2A—C3A—C4A C2A—C3A—H3AA C4A—C3A—H3AA C5A—C4A—B1A C5A—C4A—B1A C4A—C5A—C6A C4A—C5A—H5AA C1A—C6A—C5A C1A—C6A—C7A C1A—C6A—C7A N1A—C7A—C6A	0.9800 104 (3) 104 (3) 119.7 (3) 119.0 (3) 119.0 (3) 118.2 (3) 121.9 (3) 120.5 (4) 119.7 119.7 119.7 119.8 (3) 120.1 120.1 120.1 120.1 120.1 120.1 120.1 120.1 120.1 120.1 120.1 120.1 120.1 120.1 120.1 120.0 (3) 120.0 (3) 120.0 119.1 (3) 121.3 (3) 119.7 (3) 120.5 (4)	C19B—H19F C1B—O1B—H10B C17B—O2B—H2OB C7B—N1B—C8B C11B—N2B—C10B O1B—C1B—C2B O1B—C1B—C6B C2B—C1B—C6B C3B—C2B—C1B C3B—C2B—H2BA C1B—C2B—H2BA C2B—C3B—C4B C2B—C3B—H3BA C4B—C3B—H3BA C4B—C3B—H3BA C3B—C4B—B71B C5B—C4B—B71B C4B—C5B—C6B C4B—C5B—H5BA C6B—C5B—H5BA C5B—C6B—C1B C5B—C6B—C7B C1B—C6B—C7B N1B—C7B—C6B	0.9800 105.1 109 (4) 119.5 (3) 118.2 (3) 118.7 (4) 121.7 (3) 119.6 (4) 120.5 (4) 119.7 119.8 120.0 (3) 120.0 120.0 121.2 (4) 119.6 (3) 119.8 (3) 119.5 (4) 120.2 120.2 120.2 120.2 120.2 120.3 119.8 (3) 121.0 (3) 120.8 (3)

С6А—С7А—Н7АА	119.8	С6В—С7В—Н7ВА	119.6
N1A—C8A—C9A	110.9 (3)	N1B—C8B—C9B	110.8 (3)
N1A—C8A—H8AA	109.5	N1B—C8B—H8BA	109.5
С9А—С8А—Н8АА	109.5	С9В—С8В—Н8ВА	109.5
N1A—C8A—H8AB	109.5	N1B—C8B—H8BB	109.5
С9А—С8А—Н8АВ	109.5	C9B—C8B—H8BB	109.5
Н8АА—С8А—Н8АВ	108.0	H8BA—C8B—H8BB	108.1
C19A—C9A—C18A	110.1 (3)	C19B—C9B—C18B	109.6 (3)
C19A—C9A—C10A	110.2 (3)	C19B—C9B—C10B	110.8 (3)
C18A—C9A—C10A	107.8 (3)	C18B—C9B—C10B	107.7 (3)
C19A—C9A—C8A	111.2 (3)	C19B—C9B—C8B	111.0 (3)
C18A—C9A—C8A	109.8 (3)	C18B—C9B—C8B	109.5 (3)
C10A—C9A—C8A	107.7 (3)	C10B—C9B—C8B	108.1 (3)
N2A—C10A—C9A	112.1 (3)	N2B—C10B—C9B	112.9 (3)
N2A—C10A—H10A	109.2	N2B-C10B-H10C	109.0
C9A—C10A—H10A	109.2	C9B—C10B—H10C	109.0
N2A—C10A—H10B	109.2	N2B—C10B—H10D	109.0
C9A—C10A—H10B	109.2	C9B—C10B—H10D	109.0
H10A—C10A—H10B	107.9	H10C-C10B-H10D	107.8
N2A—C11A—C12A	120.7 (3)	N2B—C11B—C12B	121.6 (4)
N2A—C11A—H11A	119.7	N2B—C11B—H11B	119.2
C12A—C11A—H11A	119.7	C12B—C11B—H11B	119.2
C13A—C12A—C17A	119.2 (3)	C13B—C12B—C17B	119.1 (3)
C13A—C12A—C11A	119.9 (3)	C13B—C12B—C11B	120.1 (3)
C17A—C12A—C11A	120.9 (3)	C17B—C12B—C11B	120.7 (3)
C14A—C13A—C12A	120.1 (3)	C14B—C13B—C12B	120.2 (4)
C14A—C13A—H13A	119.9	C14B—C13B—H13B	119.9
C12A—C13A—H13A	119.9	C12B—C13B—H13B	119.9
C13A—C14A—C15A	120.8 (3)	C13B—C14B—C15B	120.8 (3)
C13A—C14A—Br2A	120.2 (3)	C13B—C14B—Br2B	119.8 (3)
C15A—C14A—Br2A	119.0 (2)	C15B—C14B—Br2B	119.4 (3)
C16A—C15A—C14A	119.3 (3)	C16B—C15B—C14B	119.7 (3)
C16A—C15A—H15A	120.3	C16B—C15B—H15B	120.1
C14A—C15A—H15A	120.3	C14B—C15B—H15B	120.1
C15A—C16A—C17A	121.4 (3)	C15B—C16B—C17B	120.6 (4)
C15A—C16A—H16A	119.3	C15B—C16B—H16B	119.7
C17A—C16A—H16A	119.3	C17B—C16B—H16B	119.7
O2A—C17A—C16A	119.1 (3)	O2B—C17B—C16B	119.0 (3)
O2A—C17A—C12A	121.8 (3)	O2B—C17B—C12B	121.5 (3)
C16A—C17A—C12A	119.1 (3)	C16B—C17B—C12B	119.5 (3)
C9A—C18A—H18A	109.5	C9B—C18B—H18D	109.5
C9A—C18A—H18B	109.5	C9B—C18B—H18E	109.5
H18A—C18A—H18B	109.5	H18D—C18B—H18E	109.5
C9A—C18A—H18C	109.5	C9B—C18B—H18F	109.5
H18A—C18A—H18C	109.5	H18D—C18B—H18F	109.5
H18B—C18A—H18C	109.5	H18E—C18B—H18F	109.5
C9A—C19A—H19A	109.5	C9B—C19B—H19D	109.5
C9A—C19A—H19B	109.5	С9В—С19В—Н19Е	109.5
H19A—C19A—H19B	109.5	H19D—C19B—H19E	109.5

С9А—С19А—Н19С	109.5	C9B—C19B—H19F	109.5
H19A—C19A—H19C	109.5	H19D—C19B—H19F	109.5
H19B—C19A—H19C	109.5	H19E—C19B—H19F	109.5
O1A—C1A—C2A—C3A	178.1 (3)	O1B—C1B—C2B—C3B	177.9 (3)
C6A—C1A—C2A—C3A	-2.1 (5)	C6B—C1B—C2B—C3B	-2.1 (6)
C1A—C2A—C3A—C4A	0.7 (6)	C1B—C2B—C3B—C4B	0.4 (6)
C2A—C3A—C4A—C5A	0.6 (5)	C2B—C3B—C4B—C5B	1.2 (6)
C2A—C3A—C4A—Br1A	-180.0 (3)	C2B—C3B—C4B—Br1B	-178.4 (3)
C3A—C4A—C5A—C6A	-0.5 (5)	C3B—C4B—C5B—C6B	-1.0 (6)
Br1A—C4A—C5A—C6A	-179.9 (3)	Br1B-C4B-C5B-C6B	178.6 (3)
O1A—C1A—C6A—C5A	-178.0 (3)	C4B—C5B—C6B—C1B	-0.7 (5)
C2A—C1A—C6A—C5A	2.1 (5)	C4B—C5B—C6B—C7B	179.8 (3)
O1A—C1A—C6A—C7A	3.9 (5)	O1B-C1B-C6B-C5B	-177.7 (3)
C2A—C1A—C6A—C7A	-176.0 (3)	C2B—C1B—C6B—C5B	2.2 (5)
C4A—C5A—C6A—C1A	-0.9 (5)	O1B-C1B-C6B-C7B	1.7 (5)
C4A—C5A—C6A—C7A	177.2 (3)	C2B—C1B—C6B—C7B	-178.3 (3)
C8A—N1A—C7A—C6A	176.5 (3)	C8B—N1B—C7B—C6B	178.6 (3)
C1A—C6A—C7A—N1A	-4.1 (5)	C5B—C6B—C7B—N1B	175.9 (3)
C5A—C6A—C7A—N1A	177.8 (3)	C1B—C6B—C7B—N1B	-3.6 (5)
C7A—N1A—C8A—C9A	-122.4 (4)	C7B—N1B—C8B—C9B	-126.7 (4)
N1A—C8A—C9A—C19A	-56.1 (4)	N1B-C8B-C9B-C19B	-56.8 (4)
N1A—C8A—C9A—C18A	66.0 (4)	N1B-C8B-C9B-C18B	64.4 (4)
N1A-C8A-C9A-C10A	-176.9 (3)	N1B-C8B-C9B-C10B	-178.5 (3)
C11A—N2A—C10A—C9A	-136.7 (3)	C11B-N2B-C10B-C9B	-119.8 (4)
C19A—C9A—C10A—N2A	-57.3 (4)	C19B—C9B—C10B—N2B	-59.5 (4)
C18A—C9A—C10A—N2A	-177.5 (3)	C18B—C9B—C10B—N2B	-179.4 (3)
C8A—C9A—C10A—N2A	64.2 (4)	C8B—C9B—C10B—N2B	62.3 (4)
C10A—N2A—C11A—C12A	-176.9 (3)	C10B-N2B-C11B-C12B	179.4 (3)
N2A—C11A—C12A—C13A	179.2 (3)	N2B-C11B-C12B-C13B	-172.0 (3)
N2A-C11A-C12A-C17A	1.9 (5)	N2B-C11B-C12B-C17B	8.8 (5)
C17A—C12A—C13A—C14A	2.0 (5)	C17B—C12B—C13B—C14B	1.0 (5)
C11A—C12A—C13A—C14A	-175.4 (3)	C11B—C12B—C13B—C14B	-178.2 (3)
C12A—C13A—C14A—C15A	-0.1 (5)	C12B—C13B—C14B—C15B	0.9 (5)
C12A—C13A—C14A—Br2A	178.7 (3)	C12B—C13B—C14B—Br2B	-178.3 (3)
C13A—C14A—C15A—C16A	-1.4 (5)	C13B-C14B-C15B-C16B	-1.3 (5)
Br2A—C14A—C15A—C16A	179.8 (3)	Br2B—C14B—C15B—C16B	177.9 (3)
C14A—C15A—C16A—C17A	0.9 (5)	C14B—C15B—C16B—C17B	-0.2 (5)
C15A—C16A—C17A—O2A	-178.9 (3)	C15B—C16B—C17B—O2B	-178.5 (3)
C15A—C16A—C17A—C12A	1.0 (5)	C15B—C16B—C17B—C12B	2.0 (5)
C13A—C12A—C17A—O2A	177.5 (3)	C13B—C12B—C17B—O2B	178.1 (3)
C11A—C12A—C17A—O2A	-5.2 (5)	C11B—C12B—C17B—O2B	-2.7 (5)
C13A—C12A—C17A—C16A	-2.4 (5)	C13B—C12B—C17B—C16B	-2.4 (5)
C11A—C12A—C17A—C16A	174.9 (3)	C11B—C12B—C17B—C16B	176.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O1B—H1OB…N1B	0.85	1.81	2.580 (4)	151
O2A—H2OA…N2A	0.85 (4)	1.79 (4)	2.578 (4)	154 (4)

O1A—H1OA…N1A	0.79 (5)	1.85 (5)	2.572 (4)	153 (4)
O2B—H2OB···N2B	0.73 (5)	1.94 (5)	2.586 (4)	149 (5)
C8A—H8AA···N2A	0.99	2.58	2.960 (4)	103
C8B—H8BA…N2B	0.99	2.60	2.966 (4)	102
C16B—H16B····O2B ⁱ	0.95	2.58	3.290 (5)	131
C19A—H19B…N1A	0.98	2.58	2.918 (4)	100
C19A—H19C···N2A	0.98	2.58	2.933 (5)	101
C19B—H19F…N1B	0.98	2.60	2.926 (5)	100
C7B—H7BA…Cg1 ⁱⁱ	0.95	2.96	3.571 (4)	123
C18B—H18D…Cg2 ⁱⁱⁱ	0.98	2.77	3.652 (4)	151

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) *x*, *y*-1, *z*; (iii) *x*, -*y*-1, *z*-1/2.

Fig. 1

